Stochastic Nonlinear Model Predictive Control of an Uncertain Batch Polymerization Reactor

نویسندگان

  • Vahab Rostampour
  • Peyman Mohajerin Esfahani
  • Tamás Keviczky
چکیده

This paper presents a stochastic nonlinear model predictive control technique for discrete-time uncertain nonlinear systems with particular focus on the batch polymerization reactor application. We consider a nonlinear dynamical system subject to chance constraints (i.e. need to be satisfied probabilistically up to a pre-assigned level). This formulation leads to a finite-horizon chance-constrained optimization problem at each sampling time, which is in general non-convex and hard to solve. We propose a heuristic methodology to handle uncertainty for highly nonlinear systems. In our framework, the uncertainty propagation is modelled via a Markov chain and a randomization technique, the so-called scenario approach, is employed yielding a tractable formulation. The efficiency and limitations of the proposed methodology is illustrated through its application to an uncertain batch polymerization reactor model and a comparison with deterministic nonlinear model predictive control is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Nonlinear Model Predictive Control of a Polymerization Process via Evolutionary Optimization

In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller ...

متن کامل

Constrained Nonlinear Model Predictive Control of an MMA Polymerization Process via Evolutionary Optimization

In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller ...

متن کامل

Nonlinear Multiple Model Predictive Control of Solution Polymerization of Methyl Methacrylate

A sequential linearized model based predictive controller is designed using the DMC algorithm to control the temperature of a batch MMA polymerization process. Using the mechanistic model of the polymerization, a parametric transfer function is derived to relate the reactor temperature to the power of the heaters. Then, a multiple model predictive control approach is taken in to track a desired...

متن کامل

Generalized Predictive Control of Batch Polymerization Reactor

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactio...

متن کامل

Adaptive Model Predictive Control of a Batch Solution Polymerization Process using Trajectory Linearization

A sequential trajectory linearized adaptive model based predictive controller is designed using the DMC algorithm to control the temperature of a batch MMA polymerization process. Using the mechanistic model of the polymerization, a parametric transfer function is derived to relate the reactor temperature to the power of the heaters. Then, a multiple model predictive control approach is taken i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015