Stochastic Nonlinear Model Predictive Control of an Uncertain Batch Polymerization Reactor
نویسندگان
چکیده
This paper presents a stochastic nonlinear model predictive control technique for discrete-time uncertain nonlinear systems with particular focus on the batch polymerization reactor application. We consider a nonlinear dynamical system subject to chance constraints (i.e. need to be satisfied probabilistically up to a pre-assigned level). This formulation leads to a finite-horizon chance-constrained optimization problem at each sampling time, which is in general non-convex and hard to solve. We propose a heuristic methodology to handle uncertainty for highly nonlinear systems. In our framework, the uncertainty propagation is modelled via a Markov chain and a randomization technique, the so-called scenario approach, is employed yielding a tractable formulation. The efficiency and limitations of the proposed methodology is illustrated through its application to an uncertain batch polymerization reactor model and a comparison with deterministic nonlinear model predictive control is presented.
منابع مشابه
Constrained Nonlinear Model Predictive Control of a Polymerization Process via Evolutionary Optimization
In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller ...
متن کاملConstrained Nonlinear Model Predictive Control of an MMA Polymerization Process via Evolutionary Optimization
In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller ...
متن کاملNonlinear Multiple Model Predictive Control of Solution Polymerization of Methyl Methacrylate
A sequential linearized model based predictive controller is designed using the DMC algorithm to control the temperature of a batch MMA polymerization process. Using the mechanistic model of the polymerization, a parametric transfer function is derived to relate the reactor temperature to the power of the heaters. Then, a multiple model predictive control approach is taken in to track a desired...
متن کاملGeneralized Predictive Control of Batch Polymerization Reactor
This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactio...
متن کاملAdaptive Model Predictive Control of a Batch Solution Polymerization Process using Trajectory Linearization
A sequential trajectory linearized adaptive model based predictive controller is designed using the DMC algorithm to control the temperature of a batch MMA polymerization process. Using the mechanistic model of the polymerization, a parametric transfer function is derived to relate the reactor temperature to the power of the heaters. Then, a multiple model predictive control approach is taken i...
متن کامل